Joël PAGE à KERVREIZH

ORIGINE DE L'ATMOSPHÈRE

Tout a commencé par le « big bang »; une gigantesque explosion qui a donné naissance à notre univers, il y a de cela une vingtaine de milliards d'années. Depuis ce temps, chaque portion de l'univers s'éloigne des autres. On dit que notre univers est en expansion. Formation des planètes Le Soleil se serait condensé à partir d'un nuage de poussières interstellaires. Lorsque le volume et la densité du Soleil sont devenus suffisants, sa température a atteint un degré si élevé que des réactions nucléaires se sont déclenchées. Les particules qui gravitaient autour du Soleil se sont ensuite agglomérées pour donner naissance aux planètes il y a 4,5 milliards d'années. Selon certaines hypothèses, au début, les planètes étaient froides et chacune possédait une enveloppe d'hydrogène et d'hélium (gaz légers). Par la suite, à mesure que chacune se contractait sous l'effet de sa propre gravité (poids), le centre se réchauffait jusqu'à devenir un noyau incandescent. Toujours selon des hypothèses, notre planète, comme les autres, avait autrefois un noyau incandescent sur lequel flottaient les substances plus légères, qui formaient ainsi une croûte solide. Au début, il n'y avait rien sur cette croûte, et la Terre ne possédait pas d'atmosphère. Celle-ci a dû s'échapper vers l'espace de la même façon que les vapeurs d'un liquide en ébullition. En effet, les gaz de l'atmosphère primitive, l'hélium et l'hydrogène, étaient suffisamment légers pour échapper à la force d'attraction de la Terre sous l'effet du rayonnement intense du Soleil, et la plus grande partie de ces gaz s'est perdue dans l'espace. Formation de l'atmosphère terrestre À mesure que la Terre se refroidissait, d'énormes quantités de méthane, d'ammoniac, de vapeur d'eau et de gaz carbonique furent expulsés du centre de la Terre vers l'extérieur. Cela constitua la première atmosphère de la Terre. Cette atmosphère, agissant comme une serre, permit de réduire la perte de chaleur de la Terre vers l'espace et notre planète demeura ainsi assez chaude pour que puisse naître la vie. Sa température se situait probablement entre 15 et 30 oC. Ensuite, il y a environ 4,5 milliards d'années, la vapeur d'eau s'est condensée pour former les océans. Le gaz carbonique se combina à des minéraux et fut absorbé par les océans, et il fut utilisé par les premiers êtres vivants. L'azote est resté dans l'atmosphère parce que cet élément réagit peu avec les autres. Il y a 3 milliards d'années, l'atmosphère contenait encore peu d'oxygène. Des réactions chimiques compliquées entre le méthane, l'ammoniac, l'eau et le rayonnement solaire donnèrent naissance à une couche d'ozone. Celle-ci joue un rôle important dans l'évolution de la vie sur Terre, car elle empêche une grande partie des rayons solaires ultraviolets, qui sont nuisibles à la vie, de se rendre jusqu'au sol. Les premières plantes apparurent il y a 2 milliards d'années et transformèrent une grande partie du gaz carbonique en oxygène. Ce processus se poursuit toujours et l'atmosphère d'aujourd'hui contient environ 78 % d'azote et 21 % d'oxygène. L'atmosphère actuelle est faite d'un mélange de gaz et de particules qui entourent notre planète. L'atmosphère est si mince qu'on peut se représenter son épaisseur relativement à la Terre comme la pelure d'une pomme relativement à l'ensemble du fruit. C'est la force d'attraction de la Terre qui retient l'atmosphère autour du globe. Vue de l'espace, la limite de l'atmosphère ressemble à un fin halo de lumière bleu foncé sur un horizon en forme de courbe. L'atmosphère joue plusieurs rôles : elle nous fournit l'air que nous respirons, ses gaz retiennent la chaleur dont bénéficie la Terre, et sa couche d'ozone protectrice nous sert d'écran contre le rayonnement solaire nocif. Elle sert également de réservoir ou d'entrepôt pour les substances naturelles ainsi que les émissions qui découlent de l'activité humaine. Dans cet «entrepôt», il se produit des actions et des réactions physiques et chimiques, dont la plupart peuvent altérer nos systèmes climatiques ou météorologiques.
LES RÉGIONS ATMOSPHÉRIQUES La terre est entourée d'une mince couche gazeuse : l'atmosphère. L'atmosphère joue le rôle de bouclier protecteur pour toutes les espèces vivantes qui habitent à la surface du globe. En outre, elle les isole de l'espace glacé et menaçant et les protège des rayons ultraviolets. L'atmosphère peut être divisée en quatre régions principales : la troposphère, la stratosphère, la mésosphère et la thermosphère. Ce sont les variations verticales de la température de l'air qui définissent la division de l'atmosphère en quatre grandes régions. Le Soleil Source d'énergie Le Soleil est une étoile de dimension moyenne, une énorme boule chaude de gaz. C'est une étoile parmi des milliards dans notre galaxie (la voie lactée). Bien que sa distance moyenne à la Terre soit de 149,6 millions de kilomètres, il reste l'étoile la plus près de la Terre. Le Soleil mesure 1 400 000 kilomètres de diamètre, 108 fois le diamètre de la Terre. La Terre tourne sur elle-même en 1 jour, mais le Soleil tourne sur lui-même en 25 jours. Il contient 75 % d'hydrogène et 25 % d'hélium qui brûlent en tout temps. Au centre du Soleil, l'hydrogène est transformé en hélium. La combustion de ces éléments permet au Soleil de libérer de la chaleur et différents rayons (ultraviolets, visibles, infrarouges, rayons X, etc.) Température du Soleil: 5800 kelvins ou 5527 oC (à la surface) 15 600 000 kelvins (au centre) Le Soleil produit sa propre lumière et sa propre chaleur. Il fournit la chaleur et la lumière à la Terre par un processus similaire à celui qui se produit dans une bombe à hydrogène. En effet, l'énergie du Soleil provient de réactions nucléaires qui se produisent dans son noyau. La chaleur extrême du Soleil (le centre atteint une température de 15 millions de degrés centigrades) permet à ses atomes d'hydrogène d'atteindre des « super » vitesses faisant en sorte qu'ils entrent en collision ensemble. Les noyaux (les centres) des atomes fusionnent en groupes de quatre et forment un atome plus lourd appelé hélium. Le choc de cette collision est tellement fort qu'une partie de l'atome est convertie en énergie. C'est cette énergie qui fournit la chaleur et la lumière à la Terre. C'est cette énergie qui cause nos différentes conditions climatiques. Notre planète tire donc toute son énergie d'une seule source: le Soleil. Le sol, les océans et l'atmosphère reçoivent de l'énergie du Soleil sous forme de rayonnement électromagnétique. La lumière que nous voyons est formée de ce rayonnement. Le rayonnement auquel nos yeux sont sensibles ne représente qu'une petite portion du rayonnement que l'on reçoit du Soleil. Variations horizontales du rayonnement solaire qui arrive à la surface de la Terre. Le sol, les océans et l'atmosphère emmagasinent l'énergie et la transforment en mouvement comme suit. L'équateur recoit plus d'énergie que les deux pôles, car : * les rayons arrivent de façon directe à l'équateur (contrairement aux autres régions où les rayons arrivent à l'oblique); * le Soleil est un peu plus proche de l'équateur que des autres régions. La Terre reçoit l'énergie du Soleil, mais elle en perd également sous forme de rayonnement. Eh oui, la Terre rayonne de l'énergie, tout comme votre corps. En effet, tout corps qui possède une température supérieure à 0 Kelvin (-273 oC) émet un rayonnement. Dans les cas de la Terre et de votre corps, ce rayonnement se nomme « rayonnement infrarouge ». La météorologie fait appel à beaucoup de principes plus ou moins simples. Ces principes sont en général directement liées à des lois de physique des gaz.
Voici plusieurs de ces principes qui vous permettrons de mieux comprendre pourquoi certains phénomènes surviennent en météorologie. L'air chaud est moins dense que l'air froid Pour comprendre ce principe, il faut connaître celui de la densité. La densité d'un corps est la quantité de matière qu'il contient dans un volume donné. Autrement dit, c'est le rapport entre la masse d'un corps et son volume. On compare la densité des corps à celle de l'eau à 4 degrés Celsius. Imaginons deux cubes vides. Si l'on place du mercure dans le premier et de l'eau dans le deuxième, le premier cube sera plus dense que le deuxième. Le mercure est un métal dont la masse atomique est très élevée (voir le tableau périodique). Les corps dont la masse est plus élevée sont plus pesants à cause de la gravité. Dans une bouteille remplie à 80%, ajoutez de l'huile. Ensuite, fermez la bouteille et agitez là. Lorsque vous déposez la bouteille, l'huile qui est moins dense que l'eau montera à la surface. L'air est un gaz qui possède aussi une densité. L'air chaud est moins dense que l'air froid car il contient moins de molécules d'air pour un volume égal (les molécules sont plus distancées les unes des autres à cause de leur agitation plus élevée). L'air chaud étant moins dense, il monte en altitude. La densité de l'air est à la base du principe de convection. Ce dernier permet la formation de nuages et d'orages l'été. Plus l'air est chaud et plus il peut contenir de l'eau Lorsque l'air est chaud, la distance entre les molécules d'air est plus grande. La place est donc plus disponible pour avoir des molécules d'eau. L'air sec est plus dense que l'air humide La différence entre l'air sec et l'air humide est la proportion de molécules d'eau dans un volume donné. Si, dans un cube d'air, on ajoute de la vapeur d'eau, quelques molécules d'air doivent laisser leur place aux molécules d'eau. Ces dernières sont plus légères que les molécules d'air. L'air sec étant plus dense, il s'élève plus difficilement. L'air sec est aussi plus stable que l'air humide. Donc, il y a moins de chance d'avoir des averses ou des orages durant l'été. Lorsqu'on comprime l'air, ce dernier s'échauffe L'air est un gaz. Les molécules qui le composent bougent dans tous les sens. Dans leur mouvement, les molécules entrent en collision produisant ainsi de la chaleur. Lorsqu'on comprime l'air, la distance entre les molécules diminue et les chances de collisions augmentent. La chaleur dégagée sera d'autant plus grande que l'air est compressée. C'est exactement ce qui se produit lorsqu'on souffle un pneu de bicyclette. La pompe devient chaude. Dans une haute pression, l'air circule dans le sens horaire tout en convergeant vers le sol. La convergence est un phénomène qui provoque une accumulation de l'air à la surface (hausse de pression) ainsi qu'un réchauffement puisque l'air se trouve relativement plus comprimé. Lorsqu'on relâche la pression sur un volume d'air, ce dernier se refroidit Si la pression de l'air contenu dans un volume diminue c'est que l'air occupe moins de place, les molécules sont moins nombreuses et par conséquent les collisions entre elles sont plus rares. Lorsqu'il y a moins de collisions, la chaleur dégagée est plus faible. C'est le phénomène inverse qui se produit. Il survient dans les basses pressions. C'est eu peu pour ça que le mauvais temps l'été apporte aussi une baisse des températures. L'eau surchauffée s'évapore L'eau peut se présenter sous trois phases: solide, liquide, gazeux. La différence entre chaque phase est la quantité d'énergie se retrouvant dans l'eau. Plus la quantité est élevée et plus les molécules sont excitées et se déplacent rapidement jusqu'au moment ou la cohésion moléculaire soit nulle. C'est alors que l'eau devient un gaz et forme la vapeur d'eau. L'été, lorsque le soleil réchauffe les océans ou les lacs, l'eau s'évapore dans l'atmosphère. En fin d'été, ce phénomène d'évaporation au-dessus de l'océan atlantique est en partie responsable de la création des ouragans. L'humidité joue un rôle important dans l'instabilité de l'air L'humidité est de l'eau sous forme de vapeur. La vapeur c'est de l'eau sous forme de gaz, c'est-à-dire une des trois phases possibles de l'eau (solide, liquide, gazeux). Examinons chacune des phases. La phase solide de l'eau c'est la glace. La glace est le résultat d'un manque d'énergie; les molécules d'eau se déplacent que très peu car l'énergie pour le faire est rare. Si on ajoute de l'énergie en chauffant la glace, les molécules d'eau se mettront à bouger d'avantage et les liens qu'elles tissaient entre elles seront supprimés. La glace devient maintenant liquide, les molécules se déplacent avec beaucoup plus de facilité. Si on ajoute encore de la chaleur, les molécules s'exciteront encore davantage en se déplaçant dans tous les sens. Les liens entre elles seront de plus en plus faibles : les molécules d'eau se détacheront pour littéralement prendre le large! C'est la phase gazeuse l'eau. Pour résumer, lorsque l'eau est sous forme gazeuse c'est uniquement une question de chaleur élevée. En revenant au concept d'humidité et d'instabilité, on observe que plus il y a d'humidité dans l'air, plus il y a de l'énergie (chaleur) dans l'atmosphère (l'eau ne s'évapore pas sans l'aide de l'énergie). Qu'est-ce qui se produit si l'atmosphère est surchauffée? L'air amorce un mouvement vers le haut en formant des cellules convectives. Les nuages se forment. Cette dernière phrase est capitale! Les nuages se forment parce que l'air qui monte se refroidi. Plus l'air est froid et moins elle peut contenir de la vapeur d'eau (pour savoir pourquoi, voir plus haut). Lorsque la vapeur se condense c'est que l'énergie potentielle se libère (on appelle ça la chaleur latente). C'est donc dire que, lorsque les nuages se forment, l'énergie potentielle que l'air contenait se libère. Mais où va t'elle? Dans l'air! C'est là clé. L'air poursuit sa montée car il continu, grâce à la chaleur latente, à se maintenir plus chaud que l'air ambiant, qui lui est plus froid. Voilà! La boucle est fermée. Ce principe sera d'autant plus fort que l'air de l'atmosphère sera chauffé et contiendra de la vapeur d'eau. L'humidité et l'instabilité de l'air jouent un rôle déterminant dans la formation des orages et du temps violent l'été. Pour qu'il y ait instabilité de l'air il doit y avoir de la chaleur L'on a vu que l'énergie joue un rôle capital dans le processeur d'instabilité. Dans la plupart des cas, l'air monte parce qu'il est chauffé. Il peut monter pour d'autres raisons mais c'est plus rare. Si la chaleur du soleil était insuffisante pour aider à amorcer l'instabilité de l'air, les orages ne pourraient pas exister. Relation entre la pression et la quantité d'eau que l'air peut contenir La quantité d'eau que peut contenir une particule dépend directement de sa température et de la pression. Par exemple, à 1000 mb à 25 degrés Celsius la quantité maximale de vapeur d'eau que la particule peut contenir est de 20g/kg alors qu'à 900 mb à 25 degrés Celsius cette quantité passe à 23g/kg. Toutefois, il ne faut pas oublier que si l'air monte, il se refroidit donc la capacité de l'air pour contenir de la vapeur d'eau diminue ; il y a risque de condensation (nuages). Plus la pression est basse et plus l'air peut se charger d'humidité. Il s'agit d'un mécanisme important dans la formation des ouragans. L'air chaud et l'air froid c'est comme de l'huile et de l'eau L'air est un gaz qui obéit au principe suivant : deux portions d'air avec des caractéristiques de température différente ne se mélangent pas bien. C'est comme si l'air chaud qui monte était une sorte de bulle d'huile qui monte dans un verre d'eau. En fait, l'air est un mauvais conducteur d'énergie. Au point de contact entre l'air chaud et l'air froid, l'échange d'énergie n'est pas tellement efficace (mais il existe!). Ce principe entre en jeux dans les cellules convectives qui produisent des nuages comme les cumulus et cumulonimbus. C'est en partie pour cette raison qu'une cellule d'air chaud peut se maintenir plus chaude que l'air ambiant tout en montant en altitude. La chaleur latente La chaleur latente est de l'énergie qui est libérée lorsque la vapeur d'eau se condense. En physique, l'énergie prend plusieurs formes. Dans un cas il s'agit de chaleur, dans d'autres cas d'énergie mécanique ou encore d'énergie potentielle. Lorsque l'eau se présente sous forme de vapeur, l'énergie qu'elle possède est très élevée. Pour récupérer cette énergie, il s'agit de faire condenser la vapeur. L'énergie se trouve libérée sous forme d'une chaleur latente. La chaleur latente joue un rôle important dans plusieurs phénomènes météorologiques. Elle joue un rôle particulier dans les orages mais aussi dans les ouragans. Elle permet de fournir l'énergie nécessaire afin qu'un ouragan puisse se maintenir en vie.